
Page 1

Volume 10, Issue 4

October 2009

Volume 10, Issue 4

October 2009

Keyboard Interfacing

This months main article is from

Electronics and Wireless World. It

shows one way of getting input to a

microprocessor circuit. A problem I

faced many years ago when you had

to build/design your own keypad if

you wanted numeric or function in-

put from a human. Nowadays re-

ferred to an “HID” (Human Interface

Device). The application is for a PIC

Editor’s Comments Inside this
issue:

Editor’s
Comments

1

K e y b o a r d
Input for PIC
Projects

1

Special points of
interest:

• C o n t a c t
details on
back page
(corrected
& updated)

• Ham-Comp
Latest on
web site.

THE WEST RAND AMATEUR RADIO CLUB

but it just as easily be applied to an-

other microprocessor. As keyboards

are so cheap these days, this could

easily solve a problem when you want

to “talk” to a system or a radio or a

teletype…

Ham-Comp meeting

The recent Ham-Comp meeting

showed the members that visited the

club house, the ways in which we can

now get round the “barriers”. When

(continued on page 10)

Wiring a few links to a spare port of

the microcontroller that is read on

reset, or a few switches that are

scanned when the PIC software is

running may be sufficient. However,

a low cost alternative is to use a stan-

dard PC keyboard. These key-

boards cost only a few pounds and it

is an input device that we are all fa-

miliar with. As a bonus there are

three LEDs that can be controlled by

the PIC program to show program

status.

Within the article all data generated

by the keyboard is given in hexa-

decimal 'NN'h form to distinguish be-

tween data and key characters such

as function key Fl. The PIC keyboard

software was written for the 16F877

microcontroller but should work

with most PIC microcontrollers, how-

ever only the 16F87x and 16C74

family has the built in serial port

used for testing.

AT keyboard

All current PCs are supplied with an

AT style keyboard that have a PS/2

type connector. The keyboard was

designed by IBM to be software con-

figurable so that there is no need to

manufacture different keyboards for

different countries . Only the key tops

need changing between countries not

the keyboard circuit. This software

flexibility allows keys to be added.

For example, recent addition of the

Euro currency key (tx), and some key-

boards now include dedicated inter-

net browser keys.

Keyboard internals

Internally these low cost AT key-

boards consist of the keys sitting on a

moulded clear rubber mat, this mat is

(continued on page 2)

Keyboard Input for PIC Projects

Page 2

Keyboard Input for PIC Projects

(continued from page 1)
placed on top of two plastic sheets with conduc-

tive circuit tracks printed on them. This conduc-

tive pattern is a 22 by 6 matrix where pressing

down a key will make the connection between

the two layers at a unique intersection. The key-

board controller continually scans this matrix

and determines which key position has been

pressed and sends this data to the PC.

The keyboard controller board is a small sin-

gle-sided printed circuit board consisting of a

surface mount controller (hidden under black

protective coating), a few discrete components,

18 wire links and the three keyboard LEDs. Fig-

ure 2 shows the keyboard viewed from under-

neath, for clarity the two conductive sheets

have been removed but they connect to the

edge connector at the top of the printed circuit

board.

Power supply

The keyboard will work off a 5-volt supply, so

the same supply can power both the PIC circuit

and keyboard. However the electrical charac-

teristics sticker on the base of my 'Ever Green

Touch' keyboard (manufactured in China) states

that it requires 5V at 170 mA.

It is hard to imagine that a single customised

controller chip requires all this power so I

measured the current and found that it was only

8 mA, and with all three LEDs on the keyboard

consumed a total of 20 mA. This is many times

what the PIC microcontroller consumes, but if

you are considering a battery powered applica-

tion, then the current the keyboard requires

will need to be taken into account.

Keyboard controller

The original keyboard design had a single chip

microprocessor, but now a customised control-

ler chip is used. This keyboard controller chip

takes care of all keyboard matrix scanning, key

de-bouncing and communications with the

computer, and has an internal buffer if the key-

stroke data cannot be sent immediately. The PC

motherboard decodes the data received from

the keyboard via the PS/2 port using interrupt

IRQ1.

The one thing that these keyboards do not gen-

erate is ASCII values. With a typical AT key-

board having more than 101 keys, a single byte

could not store codes for all the individual keys,

plus these keys along with shift, control, or alt,

etc. Also for some functions there is no ASCII

equivalent, for example 'page up', 'page down',

'insert', 'home', etc.

When the keyboard controller finds that a key

is being pressed or released it will send this

keystroke information, known as scan codes, to

the PIC microcontroller. There are two different

types of scan codes - make codes and break

codes.

make code

A make code is sent whenever a key is pressed

or held down. Each key, including 'shift',

'control' and 'alt', sends a specific code when

pressed. Cursor control keys, 'delete', 'page

up', 'page down', 'ins', 'home' and 'end', send ex-

tended make codes. The make code is pre-

ceded by 'E0'h to indicate an extended code.

The only exception is the 'pause' key that starts

with a unique 'E1'h byte.

break code

A break code is sent when a key is released.

The break code is the make code preceded by

(Continued on page 3)

Page 3

keys will generate their own scan codes, the 'A'

scan code value is not changed if a shift or con-

trol key is also pressed. Pressing the letter 'A'

generates '1C'h make code and when released

the break code is 'F0'h, '1C'h.

Pressing 'shift' and 'A' keys will generate the fol-

lowing scan codes :

The make code for the 'shift' key is sent '12'h.
The make code for the 'A' key is sent '1C'h.
The break code for the 'A' key is sent 'F0'h, '1C'h
The break code for the 'shift' key is sent

'F0'h,'12'h.

If the right shift was pressed then the make code

is '59'h and break code is 'F0'h, '59'h.

By analysing these scan codes the PC software

can determine which key was pressed. By look-

ing at the shift keystroke the software can distin-

guish between upper and lower case.

Keyboard commands

The main purpose of the keyboard is to accept

typed data and send this information to the host

computer, however there are several com-

mands that can be sent to the keyboard control-

ler. Figure 3 shows some of the more common

keyboard commands. There are other com-

mands that can be used to change make or

(continued on page 4)

Keyboard Input for PIC Projects

(Continued from page 2)

'F0'h byte. For extended keys the break code

has an 'E0'h preceding the 'F0'h and make code

value. The only exception is the 'pause' key as it

does not have a break code and does not auto-

repeat when held down.

key code

Every key is assigned its own unique code so

that the host computer processing the informa-

tion from the keyboard can determine exactly

what happened to which key simply by looking

at the scan codes received. There is no direct

relationship between the scan code generated

by a particular key and the character printed on

the key top.

The set of make and break codes for each key

comprises a scan code set. There are three stan-

dard scan code sets numbered 1, 2, and 3 -

stored within the keyboard controller. Scan

code set 1 is retained for compatibility for older

IBM XT computers. Scan set 3 is very similar to

the set 2 but the extended codes are different.

Scan code set 2 is the default for all AT key-

boards and all scan codes discussed here are

from this set

scan code

If, for example, you press 'shift' and 'A' then both

Page 4

whenever the appropriate key is pressed. Con-

trol of these LEDs is done by the host computer

sending LED on/off commands to the keyboard

processor. The keyboard LEDs and the corre-

sponding keys are independent of each other.

To tell the keyboard which LED to turn on or

off, send command 'ED'h and wait for the key-

board to respond with acknowledge byte

('FA'h). Then send the binary number

'00000ABC' where the W bit is the state of the

'Caps Lock' LED, 'B' is the state of the Num Lock'

LED, and 'C' is the state of the 'Scroll Lock' LED.

Logic 'F is LED on, '0' for LED off. The keyboard

will then respond (again) with 'FA'h indicating

that it has successfully received the informa-

tion.

The most significant five bits in the byte con-

taining the LED information must be zero. If any

of those bits is set then the keyboard processor

will respond with 'FE'h (error) and wait for a

properly formatted byte. There are no mecha-

nisms for ‘asking' the keyboard controller the

status of these LEDs, if you are using the LEDs

and need to know which are on or off then the

PIC program will need to store this information.

'EE' echo test

As the name suggests this command echoes

(Continued on page 5)

(Continued from page 3)
break codes for individual keys, but the com-

mands given here are the most useful. The pos-

sible keyboard response to these keyboard

commands is given in Fig. 4.

Keyboard self test

When the keyboard is first powered up it runs

a self diagnostic test., this test primarily looks

for keys that are 'stuck' down. All the LEDs on

the keyboard will also briefly switch on and off

as part of this self test. When the keyboard is

plugged into a PC you may be forgiven for

thinking that this was part of the PC start-up se-

quence as it happens around the same time as

the PC is powering up and also running diag-

nostic tests.

After running the self-test the keyboard proc-

essor sends 'AA'h byte if everything is working

correctly. If the keyboard processor finds a

fault it will send 'FE'h byte. If the keyboard re-

ports a fault then the PC BIOS will display

'Keyboard error or no keyboard present' fol-

lowed by the less than useful message 'Press F1

to continue' (!).

'ED' keyboard LED command

The keyboard processor does not switch the

Num Lock', 'Caps Lock', and 'Scroll Lock' LEDs

Keyboard Input for PIC Projects

Page 5

When the new scan code is received the key-

board will again reply with 'FA'h.

To find out which scan code set is currently be-

ing used by the keyboard send '00'h instead of a

new scan code set number. The keyboard will

then respond with scan code number '01'h, '02'h

(default) or '03'h.

All the scan codes presented here are those ac-

tually generated by the keyboard. When the

keyboard is plugged into the PC the BIOS may

translate some of these scan codes for compati-

bility reasons. Consequently a

PC program may report

slightly different scan codes

for some keys.

'F2'h device identity com-

mand

The keyboard will respond to

this command with 'FA'h

(acknowledge) followed by

the keyboard device type

numbers 'AB'h,'83'h. When the

keyboard is plugged into a PC

the computer needs to know

what type of device is con-

nected to which PS/2 port.

Other PS/2 devices can also

be connected, such as a PS/2

mouse, which will respond

with ID number '00'h,'00'h.

'FF'h keyboard test com-

mand

If the keyboard is wired to the

same 5-volt supply as the PIC,

then it is possible that the self

test result will appear before

the PIC microcontroller has

initialised, particularly if the

(continued on page 6)

(Continued from page 4)
back the command value. It can be used as a

quick test to make sure that the keyboard is con-

nected and working.

'F0' set scan code command

If you want to change to a different scan code

set, send 'F0'h command byte to the keyboard.

The keyboard processor will respond with 'FA'h

(acknowledge). Then send '01'h, "02"h, or '03'h

for scan code sets 1. 2, or 3.

Keyboard Input for PIC Projects

Page 6

(continued from page 5)
PIC power up timer is enabled. If the keyboard

is already powered then sending command

byte 'FF'h will force the keyboard to reset and

run the self-test. This command is acknowl-

edged by the keyboard ('FA'h) before the self

test is executed. Alternatively use the 'F2'h

command to get the keyboard device id num-

ber.

Typematic

When you press and hold down a key on the

keyboard that key becomes typematic. This

means the keyboard will keep sending that

key's make code until the key is released. The

typematic delay is a short delay between the

sending of the first and second make scan

code. Typematic rate is how many characters

per second will appear after this initial type-

matic delay. The typematic delay can range

from 0.25 second to 1 second and the type-

matic rate can range from 2 characters per sec-

ond (cps) to 30 cps.

'F3'h set keyboard repeat rate

These typematic values can be changed using

the 'F3'h command (set auto repeat rate), send

'F3'h and the keyboard will respond with 'FA'h

byte, then the keyboard waits for the data byte

that specifies the auto-repeat delay and rate.

With the exception of the 'pause' key, all keys

will auto repeat. The default delay is 500 mS

and the auto repeat default is 10 characters per

second. It is unlikely that these default values

will need to be changed, but there may be cir-

cumstances where longer delays are needed to

allow the PIC to process information between

key presses.

Keyboard serial data

The AT keyboard transmission protocol is a

serial format, with one line providing the

data and the other line providing the clock.

The data length is 11 bits with one start bit

(logic 0), 8 data bits (LSB first), odd parity bit

and a stop bit (logic 1). The clock rate is ap-

proximately 10 to 30 kHz and varies from

keyboard to keyboard.

The communications protocol is bi-

directional, but as there are only two lines

the handshaking between keyboard and PIC is

more complicated. Unusually the keyboard

generates the clock irrespective of the direc-

tion of data flow. The keyboard communications

protocol is a strange mix with elements of both

synchronous (separate data and clock) and

asynchronous (start/stop bits) data transmis-

sion.

Both the keyboard clock and data lines are

open collector outputs and require pull-up re-

sistors to +5V. The PIC microcontroller has in-

ternal pull-up resistors on Port B which are en-

abled in the 'iniPIC' routine, if the keyboard is

connected to another port then external pull-up

resistors will be needed.

How the code works

The keyboard clock signal is connected to RB0

and used to generate an interrupt on the falling

edge. The keyboard data line is connected to

(Continued on page 7)

Keyboard Input for PIC Projects

Page 7

not send and the keyboard controller will

buffer the keystroke data.

Variable RXbits keeps track of which bit is be-

ing received, as RXbits is incremented on each

interrupt. Variable keywork stores the bit pat-

tern of the data received from the keyboard.

This is achieved by setting the carry flag ac-

cording to the logic status of the data at port

RB1, then using the rotate right PIC instruction

to shift the carry bit into the keywork variable.

If RXbits = 10 this indicates the PIC is process-

ing the parity bit, however this bit is ignored

by the PIC program. On receiving RXbit = 11

(stop bit) the Conv flag is set indicating the end

of data. Setting this flag causes the routine

FromKey to be called from the main program

loop.

FrornKey routine clears the Conv (convert) flag

and sends the received keyboard data

(contained in variable char) to the PmtHex

(print hex) routine in the keydb.asm code.

This PrntHex routine converts the binary data

into the ASCII suitable for display. Adding 48 to

a binary decimal number converts that number

to its ASCII text equivalent, if the number is

greater than 9 then adding 55 will convert the

hexadecimal number into an ASCII character.

The PrntHex routine then calls the SendPC rou-

tine. This routine waits for the TXIF flag to be

set, this indicates that the serial communica-

tions TXREG (transmitter register) is empty.

TXREG register is loaded with the char data

and this data is automatically transmitted via

the serial port to the PC. These routines are not

required in keybd1.asm.

Sending data to the keyboard When the PIC

microcontroller needs to send data to the key-

board, the routine ToKey is called. ToKey sets

the clock line low for 60 milliseconds using

timer 0. Bringing the clock line low prevents

the keyboard from transmitting data. While the

data line is held low the clock line is set to in-

(continued on page 8)

(Continued from page 6)
PIC port RB1. Running the iniPIC routine initial-

ises the various register options, sets the timer

prescaler and initialises the variables. In pro-

gram keybd.asm, the serial communication port

is initialised.

TimerOverflow is the T0IF flag of the 8-bit timer

0, this flag is set whenever the timer has

counted up to 255 and starts counting again at

0. This flag is used to indicate a timeout and

various counts are then automatically cleared.

Without this, if the received data becomes cor-

rupt and the RXbits count is wrong, then all fol-

lowing data will be decoded incorrectly. An al-

ternative method if the timer is being used

within the application program is to use the

watchdog timer.

Variables TXbits and RXbits are counters indi-

cating which bit in the serial keyboard data is

being sent or received. The Conv flag is set

whenever the data had been received from the

keyboard. ReceiveDataFlag is the serial com-

munication RCIF flag that is set whenever data

is received from the PC via the serial port

(keybd.asm only). This value is stored in vari-

able TX and the ToKey routine is called.

Receiving data from keyboard

The keyboard will transmit data to the PIC mi-

crocontroller as soon as a key is pressed if both

the clock and data lines are high, as this indi-

cates idle status. If the clock line is held low by

the PIC microcontroller then the keyboard can-

Keyboard Input for PIC Projects

Page 8

(continued from page 7)
put and the keyboard will start generating a

clock signal.

To make a port pin an output a '0' is sent to the

TRISB (data direction register), a '1' sets that

relevant port pin to an input. Data to be trans-

mitted is output on the clock interrupt and

read by the keyboard on the rising clock

edge.

PIC software

Sending the scan codes to the PC is a useful

demonstration (and functional test) of the key-

board to PIC connection. It allows specific key-

board scan codes to be verified but it is of very

limited application.

(Continued on page 9)

Keyboard Input for PIC Projects

Page 9

Followed by the extended scan codes gener-

ated when pressing the insert key (make code

= 'E0'h, '70'h, break code = 'E0'h, 'F0'h, '70'h)

and eight byte extended code when the pause

key was pressed (make code = 'E1'h, '14'h,

'77'h, 'E1'h, ' F0'h, '14'h, 'F0'h, '77'h, no break

code).

Figure 14 shows an interactive Windows pro-

gram displaying the keyboard response to

various commands sent to the keyboard from

the PC via the serial communications port. The

four buttons (reset, keyboard id, echo, and

scan code) when pressed will send that par-

ticular command to the keyboard and the key-

board's responses can be seen. The three LEDs

can be switched on or off and when the button

marked 'LED' is pressed this command is sent

to the keyboard and the appropriate LEDs

should be lit on the keyboard.

The 'AA'h is the result of the keyboard self test,

'FA'h is the command acknowledgement for the

device identity request. The keyboard re-

sponds with device type 'AB'h and '83'h'. The

two 'FA'h bytes are acknowledgement of the

scan code query command and keyboard

processor responds with scan set 2. The final

two 'FA'h are for the LED command acknowl-

edge. The program will also show any make or

break codes if any keys are pressed on the

keyboard.

This Windows program (two versions are avail-

able, one for Windows 95/98/ME and the other

for Windows XP) and the two PIC assembler

source code programs (keybd.asm and

keybd1.asm) will be available from EW -just

email j.lowe@cumulusmedia.co.uk stating

which one you'd like.

Construction

The PIC circuit can be built using strip board,

the 20 MHz crystal can should be connected to

(continued on page 10)

(Continued from page 8)
The main function of this software is to use the

keyboard as an input device to a PIC microcon-

troller. Rather than send the scan code to the

PC, the scan value should be checked for vari-

ous scan codes and appropriate data values

modified within the PIC application program.

Assembler listing keybd1.asm shows a simple

method of reading the keyboard scan codes

and if specific keys are pressed, then the key-

board LEDs are turned on or off. The program

looks for the letter 'A' (scan code '1C'h), when

this is pressed all the LEDs are switched on

(variable led determines which LEDs are

switched on). When the letter 'B' is pressed

(scan code '32'h) all the LEDs are switched off.

All other key presses are ignored. These key-

board keys and which LEDs are activated can

be changed, or values changed when specific

keys are pressed.

Testing the interface

When the PIC is programmed with the keybd.

asm code any make and break scan codes will

be sent as ASCII characters to the PIC serial

port. This requires the 74LS14 and two resistors

to be fitted. A suitable three-wire serial cable

to connect the PIC to the PC's serial port will

need to be made.

The Windows Hilgraeve HyperTerminal

(supplied with Windows) program can be used

to view these keyboard generated scan codes

as they are transmitted by the PIC software as

text. The program properties should be set up

as follows - direct to com, speed as 57600

baud, 8 bits, no parity, no flow control and one

stop bit.

Figure 13 is a HyperTerminal screen showing

the self test passed byte followed by the scan

codes for letters A (make code = '1C'h, break

code = 'F0'h, '1C'h), B (make code = '32'h',

break code = 'F0'h, '32'h), C (make code =

'21'h, break code = 'F0'h, '21'h).

Keyboard Input for PIC Projects

Page 10

(continued from page 9)
0 Volts for correct operation. The two inverters

and series current limiting resistor are for the

optional PC serial communications. They are

not necessary for the keyboard connection.

The PIC expects to interface to a serial line

driver which in operation would invert the

data, as a serial driver IC is not used then the

data has to be inverted.

Care is needed when wiring the PS/2 socket -

particularly for the power connection. Remem-

ber to observe the keyboard self test when the

keyboard is plugged into the socket. All the

LEDs should briefly flash if the wiring is cor-

rect. If not then disconnect the power supply

and check the wiring.

Acknowledgements

My thanks to Andrew Thomas for help with the

PIC programming. PIC is a registered trade-

mark of Microchip Technology Incorporated,

USA. Windows is a registered trademark of Mi-

crosoft Corporation.

From Wireless World

Keyboard Input for PIC Projects

someone says “it’s impossible”! Reply “Not

for a Ham”!

When someone says you cannot make an old

program work under Windows XP/Vista/7,

tell them I showed you how.

Electronic Recycling

Elektor magazine has a Summer and Winter

Issue that has a large number of simple elec-

tronic projects. All of them are tried and

tested by the editorial staff. This means that

most can be constructed and will work on

switch on.

Unfortunately many of the kits offered over

the Internet for money, do not work for a vari-

ety of reasons. Building kits without either the

basic knowledge or experience is demoralis-

ing. Lots of things can go wrong. Poor assem-

bly documentation, circuit explanation and

test point voltages and waveforms make it im-

possible to fault-find.

I recommend locally built and designed kits for

the simple reason that the designer can be

readily talked to by the constructor. Instead of

the other side of the planet and only communi-

cates with email.

One of the most avidly read articles or features

of any electronic magazine has always been the

“Circuit Ideas”. This was scanned for useful

ideas and the merits discussed at length with

my colleagues. The photocopier was the only

way to “capture” this information then. Nowa-

days you can search the Internet and find a mul-

titude of sites offering “Circuit Ideas”. Unfortu-

nately the majority are badly written or not ex-

plained using basic principles.

In our next issue I am going to fill it with

“Circuit Ideas”.

JB 2009-10-11

Editor’s Comments

Page 11

Bulletins (Sundays at …)
11h15 Start of call in of stations

11h30 Main bulletin start

Frequencies
439.000MHz 7.6MHz split

Input: 431.4MHz (West Rand Repeater)

145,625 MHz (West Rand Repeater)

 10,135 MHz (HF Relay)

We need your input! Email us articles,

comments and suggestions please.

zs6wr.club@gmail.com

West Rand members - we need your input!

Radio Amateurs do it with more frequency!

To make this the best ham radio magazine

in South Africa we need your input. Please

submit articles, comments, suggestions etc.

Please send plain text with no formatting to

the email address below.

In July 2003, we re-published an Anode

Compendium on CD. It has the issues from

July 2000 until June 2005. This included the

new Adobe reader. It has been updated,

check with the chairman for details.

The West Rand Amateur Radio Club
Established in 1948

KG33XU 26.14122 South - 27.91870 East

P.O. Box 562
Roodepoort
1725

Phone: 082 342 3280 (Chairman)

Email: zs6wr.club@gmail.com

Web page: www.jbcs.co.za/ham_radio

Chairman Joop Hesp ZS6C 082 342 3280 zs6wr.club@gmail.com

OR

joophesp@telkomsa.net

Vice Chairman Geoff ZS6GRL 082 546 5546 glevey@gmail.com

Secretary Phillip ZS6PVT 083 267 3835 phillipvt@sse.co.za

Treasurer Craig Woods ZS6CRW 082 700 0163 craig.woods@absamail.co.za

Member Romeo Nardini ZS6ARQ 082 552 4440 roshelec@global.co.za

Member (Anode) John Brock ‘PieRat’ 011 768 1626 brockjk@gmail.com

Member (Technical) Ron ZR6RON 082 902 8343 ronnie@calidus.co.za

SARL Liaison Willem ZS6WWJ 082 890 6775 marie.w@absamail.co.za

